1) т.к. точка О середина отрезков, то
РО =OQ SO = OR
POS=ROQ POR = SOQ т.к. вертикальные углы
Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны<span>
</span>Значит треугольник POS= треугольнику ROQ ,
а треугольник POR = треугольнику SOQ
Отсюда следует, что PS = RQ PR = SQ
2) рассмотрим треугольник ОВN и треугольник OAM
угол О общий, сторона ON = стороне ОМ угол ONB = углу ОМА
Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Значит эти треугольники равны. Отсюда следует, что
BN = AM угол В = углу А
Если две стороны одного треуг пропорциональны двум сторонам другого треуг и углы,заключенные между этими сторонами,равны, то такие треугольники подобны.Доказательство: Рассмотрим два треугольника ABC и A1B1C1, у которых AB/A1B1=AC/A1C1, угол А= углу А1.Докажем,что треуг ABC подобен треуг А1В1С1. Для этого, учитывая первый признак подобия треугольников достаточно доказать,что угол В=углу В1.Треугольники АВС2 и А1В1С1 подобны по первому признаку полобия треугольн,поэтому AB/А1В1=АС2/А1С1.С другой стороны, по усл. АВ/А1В1=АС/А1С1. Из этих двух равенств получаем АС=АС2.<span>Треуг АВС и АВС2 равны по двум сторонам и углу между ними(АВ-общая сторона,АС= АС2 и угол А= углу 1, поскольку угол А= углу А1 и угол 1=углу А1). => что угол В=углу 2, а так как угол 2 = углу В1,то угол В=углу В1. Теорема доказана.</span>
(2х+5х)/2=28, 7х=56, х=8, значить основи дорівнюють 16 см і 40 см