Ну ладно, хотя что тут решать мне - не понятно.
1.
Когда надо найти угол между плоскостями, речь идет о линейном угле двугранного угла. Плоскости пересекаются по прямой линии (в данном случае АС), поэтому надо найти на чертеже - или построить - плоскость, перпендикулярную АС. Дальше решается так - эта НАЙДЕННАЯ ИЛИ ПОСТРОЕННАЯ плоскость пересекает ОБЕ плоскости по прямым линиям, точка пересечения которых (этих линий) лежит на АС. Вот угол между этими прямыми и надо найти.
В данном случае все совершенно элементарно - АС по условию перпендикулярно ВС (лежащей в плоскости АВС), и - кроме того, DB перпендикулярно плоскости АВС, следовательно, AC перпендикулярно и DB. Поэтому АС перпендикулярно плоскости DCB (и прямой DCлежащей в плоскости DCB), и плоскость DCB пересекает плоскость АВС по BC, и плоскость ACD по CD.
Значит, надо найти угол DCB. Это - острый угол в прямоугольном треугольнике DCB, в котором гипотенуза DC = 6, и катет BC = 3<span>√3 (найдено из треугольника АВС, ВС = АВ/2).</span>
<span>Поэтому угол DCB = 30 градусов.</span>
<span>2.</span>
<span>Здесь все прозрачно, К лежит на биссектрисе линейного угла, и угол 60 градусов - перпендикуляры на стороны линейного угла (секущая плоскость перпендикулярно линии пересечения плоскостей проведена через точку К) в 2 раза меньше расстояния от вершины этого угла до К (то есть там два треугольника с углом в 30 градусов между биссектрисой и сторонами). </span>
В прямоугольном треугольнике АОВ ∠СВА=90-∠СВО.
В тр-ке СВО СО=ВО ⇒ ∠СВО=∠ВСО.
В тр-ке ВСД ∠СВД=90°, т.к. он опирается на диаметр, значит ∠СДВ=90-∠СВД=90-∠ВСО=∠СВА.
Так как в тр-ках АВД и АВС ∠В общий и ∠СВА=∠СДВ - они подобны.
Доказано.
Классическое построение золотого сечения выглядит так:
На прямой АВ, с помощью циркуля восстановим серединный перпендикуляр. Параллельно нему построим параллельную прямую, проходящую через точку В, которая будет перпендикулярна АВ. Из точки В проведём дугу радиусом, равным половине АВ пересекающую свой перпендикуляр в точке С. Тем же радиусом, проведём дугу из точки С, пересекающую прямую АС в точке Д. С помощью циркуля, на прямой АВ, отложим отрезок АЕ, равный АД. Тогда построенные отрезки будут удовлетворять тождеству: АВ/АЕ=АЕ/ВЕ=φ.
На новом рисунке мы видим, что расстояния от точек В и С до места пересечения отложенных дуг равны, образуя равнобедренный треугольник. Место их пересечения соответствует точке С на первом рисунке. АВ=2АО, ОС=ОВ, АС=АЕ, значит точка Е делит отрезок АВ в золотом отношении.
Нужно сделать нормальный чертеж и станет ясно, что меньшая боеовая сторона прямоугольной трапеции равна диаметру вписанной окружности. В данном случае она равна 4.
Можно фотографию отрезка? Если єтот отрезок есть