1) Верно, т.к. <span>равные наклонные имеют равные проекции</span>
2) Ставим точку А, не лежащую на прямой с
( на рисунке угольник синий) подставляем его к прямой с как показано на рисунке, проводим прямую b (которая пересекает с в точке В)
Из точки А проводим произвольную прямую d, пересекающую прямую с в точке D
перпендикуляр - АВ
наклонная - AD
Площадь треугольника ABH равна половине площади равностороннего треугольника с высотой BH (высота делит равносторонний треугольник на два прямоугольных треугольника с углом 60°).
Площадь равностороннего треугольника с высотой h: h^2/√3
S(ABH)= BH^2/2√3
Прямоугольный треугольник с углом 45° - равнобедренный.
△CBH - равнобедренный, BH=CH
S(CBH)= BH*CH/2 =BH^2/2
S(ABC)= S(ABH)+S(CBH) =BH^2(√3+3)/6 =0,7886*BH^2 =19,72 (см)