Стороны, параллельные средним линиям, равны соответственно 3x,2x,4x
Объяснение:
Из прямоугольного треугольника CDB, по теореме Пифагора
BD = x√3 .
Высота, опущенная из вершины прямого угла на гипотенузу, есть среднее пропорциональное между проекциями катетов.
CD² = BD * AD ⇔ x² = x√3 * AD ⇔ AD = x/√3
AD = x√3 / 3 = BD/3 = 1/3 * BD - доказано.
1) ∠1 является односторонним углом с ∠2 при парал. прям. и сек. ⇒ сумма односторонних углов равна 180°(по св-ву). Так как ∠1 в 4 раза меньше ∠2, а сумма их равна 180, мы можем составить уравнение, приняв за х ∠1. Получим:
х+4х=180
5х=180
х=36
∠1=36°
∠2=144°
∠2=∠3(по св-ву вертикальных углов) ⇒ ∠3=144°.
2) ∠1 и ∠2 - соответственные при парал. прям. и сек. ⇒ ∠1=∠2(по св-ву)
А так как сумма их равна 100°, можно сказать, что ∠1=∠2=50°
∠3 смежен с ∠1 ⇒ сумма их равна 180(по св-ву смеж. углов) ⇒ ∠3=180°-50°=130°.
3) ∠2 равен вертикальному с ним ∠(он без названия, пусть будет ∠4)(по св-ву). Рассмотрим ∠1 и ∠4. Они односторонние при парал. прям. и сек.
⇒ их сумма равна 180. А так как ∠2=∠4 и он больше ∠1 на 90°, то можно снова составить уравнение, где х=∠1:
х+х+90=180
2Х=90
х=45
Тогда: ∠1=45°
∠4=∠2=45+90=135°
∠1=∠3(по св-ву верт. углов) ⇒ ∠3=45°
№2:
Так как a||b, то углы ABC и CDE равны (свойство секущей и двух параллельных прямых), ⇒, угол CDE=70.
Так как угол ACD=115, а угол АСЕ=180(прямой), то угол DCE=ACE-ACD=180-115=65.
Так как в треугольнике 180 градусов, то угол CED=180-65-70=45.
Треугольники АВС и СDE равны, ⇒, угол ВАС=45, угол АСВ=65
№4:
В треугольнике АВС: угол АВС=40, а АСВ=90,⇒, ВАС=180-90-40=50.
В треугольнике ВCD: DBC=40, BDC=90,⇒, DCB=180-90-40=50
В треугольнике ADC: ADC=90, DAC=50,⇒,ACD=180-90-50=40
№3:
В треугольнике КМР прямая МН делит угол М пополам,⇒, углы КМН и РМН равны = 75.
Так как угол МНР=15, а угол КНР=180(прямой), то КНМ=180-15=165.
Значит, в треугольнике КМН: угол К=180-75-165=-60,⇒, угол МКН - тупой.
В треугольнике МНР: МНР=15, НМР=75,⇒, угол Р=180-75-15=90,⇒, угол МРН-прямой.