B трапеции ABCD ( AD || BC) : < A+ < B =180° ⇒ < B =180° - < A , а в равнобедренной трапеции еще и <A = <D , поэтому : < B = 180° - < D =180° -70° =110° .
Из условия следует, что угол А равен 180-64-24=92 градуса. Высота дает треугольник АВК. Здесь угол К - прямой, угол В=64. Значит, угол ВАК раве 90-64=26. А биссектриса дает треугольник АБМ. и угол ВАМ в нем раве 1/2 *92=46. Из рисунка видно, что угол КАМ между биссектрисой и высотой равен 46-26=20 градусов. Теоретически, если высота с другой стороны, то получится 90-24=66. 66-46=20. Везде 20 градусов.
Чтобы найти дли ВD, надо найти координаты точки D. Эта точка - конец отрезка ВD. Координаты точки D знаем, будем искать координаты середины этой диагонали. Пусть это будет точка О(х;у;z). Эта точка - середина диагонали АС. х = (1-1)/2 = 0
у = (3+0)/2 = 1,5
z = (2 +2)/2 = 2
О(0; 1,5;2 ) Пусть В(х';y';z'))
(x' + 5)/2 = 2,5, ⇒x' +5 = 5, ⇒x'= 0
(y' - 4)/2 = 1,5, ⇒ у' -4 = 3, ⇒y' = 7
(z' +1)/2 = 2, ⇒ z' +1 = 4, ⇒ z' = 3
B(0; 7; 3)
|BD| = √((0-5)² +(7+4)² + (3 -1)²)=√(25 + 121 + 4) = √150= 5√6
Диагональ делит угол пополам, т.е. 120/2=60
С другого конца диагонали такой же угол 120/2=60, т.е. узнать оставшуюся вершину не составит труда 180-60-60=60 т.е треугольник равнобедренный, а, следовательно, его стороны равны 10
Т.о периметр ромба 10*4=40
Ответ:
10 см
Объяснение:
у равнобедренного треугольника стороны равны следовательно 15+15= 30 боковые стороны без основания
40-30=10 основание поскольку периметр сумма всех сторон