По теореме Пифагора АД=корень из(СДквадрат+АСквадрат)=корень из(256+144)=20. Тогда АВ=корень из(АДквадрат+ВДквадрат)=корень из(400+225)=25. Можно вторым способом ВС=корень из (СДквадрат +ВДквадрат)=корень из(256+225)=корень из 481. Тогда АВ=корень из (АСквадрат+ВСквадрат)=корень из(144+481)=25.
Треугольник АВС. Высоты АК (к ВС) и ВЗ (к АС) . О-точка пересения. ВО=2х, ОР=х
<span>Треугольник ВОК. Угол ВОК=60 град. ОК перпендикулярно ВС, значит угол ОВК=90-60=30 град. Против угла в 30 град лежит сторона, равная 1/2 гипотенузы. ВО=2х, значит ОК=2х/2=х. Аналогично рассмотрев треугольник АОР, находим, что ОР=х. Значит треугольники АОР и ВОК равны, АО=ОВ, АР=ВК, КС=РС. Так же рассуждая, можно из С через точку О провести прямую до пересечения с АВ. Все рассуждения аналогичны. Таким образом АВ=ВС=АС.</span>
ВС=15:2=7,5 т.к сторона ,лежащая против угла в 30 градусов равна половине гипотенузы!!!
1. Областью определения этой функции является любое действительное число, поскольку она задана в виде многочлена.
2. Находим производную функции. Она равна (5икс в четвертой степени ) минус (3х²) -4
3. Приравняем к нулю производную, решив уравнение эф штрих равно нулю, т.е. найдем критические точки этой функции. Напомню. критические точки - это внутренние точки области определения, в которых производная равна нулю или не существует. Производная существует везде, остается проверить, в каких точках она обращается в нуль. Примем х²=у- число, большее нуля, если оно равно нулю, то получаем -4=0, а это не так. Перейдем к уравнению относительно у. получим у²-3у-4=0, по теореме Виета у₁=4, у₂= -1- сразу отбрасываем, остается у₁=4, т.е. х²=4, это уравнение дает два корня х₁=2 и х₂ =-2, оба не попадают на отрезок [-1;1 ], заданный по условию. Остается проверить только концы отрезка, т.е. найти значения функции в точках -1 и 1.
у(-1)= -0,2-(-1)-4*(-1)+1= 5,8, у(1)=0,2-1-4+1=-3,8. Из этих значений и выбираем наибольшее и наименьшее значения функции на указанном отрезке . Наибольшее значение равно 5,8; наименьшее равно -3,8.