Достроив треугольник, очевидно, что т.к. т. В лежит на середине стороны треугольника АКD, то ВС - средняя линия треугольника. Следовательно ВС =1/2АD. Тогда, АD+ВС = 18.
Примерно так
Х*Х/2=112,5
х*х=225
х=15 длина
х/2= 7.5 ширина
Построим правильную треугольную
призму АВСА1В1С1. Проведем диагональ боковой поверхности АВ1
Ребро (высота) данной призмы ВВ1=√(АВ1^2-AB^2)= √(10^2-6^2)= √(100-36)= √64=8 см.
Площадь боковой поверхности призмы
равна S(б)=P*h (где P – периметр основания призмы, h – высота призмы)
Так как призма правильная то:
P=3a (где а – сторона треугольника)
Р=3*6=18 см
S(б)=18*8=144 кв. см.
Полная площадь призмы равна S=S(б)+2S(ос) (где S(ос) – площадь основания).
<span>Площадь правильного треугольника (площадь
основания) находим по формуле S= (√3*a^2)/4</span>
S= (√3*6^2)/4=(√3*36)/4=9√3 см
S=144+2*9√3=144+18√3 см
Можно так: S<span>=144+2*15.59= (приблизительно)
175.18 см.</span>