∠ВАС = (180-120)/2 = 30°
Половинка основания
AH = AC/2 = 12/2 = 6 см - первый катет
Высота ВН - второй катет
Гипотенуза АВ в 2 раза больше, чем катет против угла в 30°
АВ = 2*ВН
По Пифагору
АВ² = АН² + ВН²
(2*ВН)² = 6² + ВН²
3*ВН² = 6²
ВН² = 12
ВН = √12 = 2√3 см - это высота
АВ = 2*ВН = 4√3 см - это боковая сторона
Обозначим ромб АВСD.
Высота МН=48 м, диагональ BD=52 м.
Точка пересечения диагоналей О.
Пересекаясь, диагонали делятся пополам и делят ромб на 4 равных прямоугольных треугольника.
Рассмотрим треугольник АВО.
ОН - его высота и равна половине высоты ромба - 24
ОВ - катет. Он же - гипотенуза прямоугольного треугольника ОНВ.
Из ∆ ОНВ найдем НВ:
НВ=√(ОВ²-ОН²)=10
<em>В прямоугольном треугольнике катет - среднее пропорциональное между гипотенузой и проекцией этого катета на неё</em>. ⇒
В Δ АОВ
ОВ²=АВ•НВ
676=10 АВ
АВ=67,6
<em>Площадь ромба</em>, как любого параллелограмма, <em>равна произведению длин его высоты и стороны, к которой она проведена. </em>
S ∆ ABCD=МН•AB
S=48*67,6=3244,8м²
а) верно.
б) АВ1=корень2, значит КТ=ТЕ-ЕК=корень2/2
S=((корень2/2)^2*корень3)/4=(корень3)/8
Ответ:
Основания трапеции равны 4м и 6м
Объяснение:
основания трапеции относятся как 2:3, т.е. 2х и 3х
средняя линия равна 5м
(2x+3x)/2=5
x=2
2x=4
3x=6