Дано: а||в, с-секущая
<1 и<2- накрест лежащее углы
<1=<2; <1+<2=210°;
найти: <1 и <2.
Решение:
<1=<2=210°÷2=105°;
ответ: 105°.
<span>Сторона правильного треугольника вычисляется по формуле a = R</span><em><span>√3</span></em><span /><span>, где R – радиус описанной окружности, и a = 2r</span><em><span>√3</span></em><span /><span>, где r – радиус вписанной окружности, приравняем стороны R</span><em><span>√3</span></em><span /><span><span> </span>= 2·r</span><em><span>√3</span></em><span /><span>, отсюда R = 2r,<span> </span>сдругой сторони по условию задачи R – r = 4 cм, отсюда r = 4 см,<span> </span>тогда R = 2·4 см = 8 см</span>
<span>Ответ: 4 см, 8 см</span>
Треугольники ABC и BMN подобны: углы BMN и АСВ равны по условию, угол ABC - общий. Тогда AB/BN=AC/MN, 40/32=15/MN. MN=(32*15)/40=12.
3.26). Проводим прямые, расположенные на расстоянии 10 мм от горизонтальной и 30 мм от фронтальной плоскостей проекций.
Далее проводим дополнительную секущую плоскость и находим линию на фронтальной проекции на расстоянии 30 мм.
На пересечении этой линии и линий 10 и 30 мм лежит точка Е.
P=4a
a= 36:4 = 9 (см)
S=ah
h=S:a
<span>h=27:9= 3(см)</span>