Правильный тетраэдр - это правильная треугольная пирамида у которой все грани являются равносторонними треугольниками. Искомый угол - это угол между высотами двух соседних граней (по определению), то есть это угол при вершине равнобедренного треугольника с боковыми сторонами - высотами граней и основанием - стороной основания тетраэдра. Высота правильного треугольника равна h=(√3/2)*a, где а - сторона треугольника. Тогда по теореме косинусов: Cosα = (AH+BH²-AB²)/(2*AH*BH) или в нашем случае
Cosα =(1/2)*а²/((1/2)*3а²) = 1/3.
Ответ: α = arccos(1/3) ≈ 70,5°.
Сумма углов правильного многоугольника равна 180(n-2), где n=6
Из вершины С проводим высоту на АД и называем Н, из вершины В проводим вторую высоту и обзываем ее точкой Н1. ВН1 и СН параллельны и равны, следовательно ВСНН1 прямоугольник
. Следовательно ВС равно НН1 и равно 7((15+8)-8(АН1)-8(СН)=7)
Бдц 20 градусов
Триугольник равнобедреный