Пусть АС=х, СР=2х, РВ=3х. тогда Растояние между серединами отрезков АС и СР составляет 0,5х+х=1,5х, что равно по условию 3 см.
то есть 1,5х=3, х=3:1,5=30:15=2, отрезок СР = 2х, тогда СР=2*2=4 (см)
Угол АВС — вписанный угол. Он опирается на дугу АС, заключённую между его сторонами (черт. 330).
Теорема. Вписанный угол измеряется половиной дуги, на которую он опирается.
Это надо понимать так: вписанный угол содержит столько угловых градусов, минут и секунд, сколько дуговых градусов, минут и секунд содержится в половине дуги, на которую он опирается.
При доказательстве этой теоремы надо рассмотреть три случая.
Первый случай. Центр круга лежит на стороне вписанного угла (черт. 331).
Пусть / АВС — вписанный угол и центр круга О лежит на стороне ВС. Требуется доказать, что он измеряется половиной дуги АС.
Соединим точку А с центром круга. Получим равнобедренный /\ AОВ, в котором АО = ОВ, как радиусы одного и того же круга. Следовательно, / А = / В. / АОС является внешним по отношению к треугольнику АОВ, поэтому / АОС = / А + / В (§ 39, п. 2), а так как углы А и В равны, то / В составляет 1/2 / АОС.
Но / АОС измеряется дугой АС, следовательно, / В измеряется половиной дуги АС.
Например, если АС содержит 60° 18', то / В содержит 30°9'.
Второй случай. Центр круга лежит между сторонами вписанного угла (черт. 332).
Пусть / АВD — вписанный угол. Центр круга О лежит между его сторонами. Требуется доказать, что / АВD измеряется половиной дуги АD.
Для доказательства проведём диаметр ВС. Угол АВD разбился на два угла: / 1 и / 2.
/ 1 измеряется половиной дуги АС, а / 2 измеряется половиной дуги СD, следовательно, весь / АВD измеряется 1/2 АС + 1/2СD, т. е. половиной дуги АD. Например, если АD содержит 124°, то / В содержит 62°.
Третий случай. Центр круга лежит вне вписанного угла (черт. 333).
Пусть / МАD — вписанный угол. Центр круга О находится вне угла. Требуется доказать, что / МАD измеряется половиной дуги МD.
Для доказательства проведём диаметр АВ. / МАD = / МАВ— / DАВ. Но / МАВ измеряется 1/2 МВ, а / DАВ измеряется 1/2 DВ. Следовательно, / МАD измеряется1/2 (МВ — DВ), т. е. 1/2 МD. Например, если МD содержит 48° 38'16", то / МАD содержит 24° 19' 8".
Следствия. 1. Все вписанные углы, опирающиеся на одну и ту же дугу, равны между собой, так как они измеряются половиной одной и той же дуги (черт. 334, а).
2. Вписанный угол, опирающийся на диаметр,—прямой, так как он опирается на половину окружности. Половина окружности содержит 180 дуговых градусов, значит, угол, опирающийся на диаметр, содержит 90 угловых градусов (черт. 334, б).
2. Угол, образованный касательной и хордой.
Теорема. Угол, образованный касательной и хордой, измеряется половиной дуги, заключённой между его сторонами.
<span>Пусть / САВ составлен хордой СА и касательной АВ (черт. 335). Требуется доказать, что он измеряется половиной СА. Проведём через точку С прямую СD || АВ. Вписанный / АСD измеряется половиной дуги АD, но АD = СА, так как они заключены между касательной и параллельной ей хордой. Следовательно, / DСА измеряется половиной дуги СА. Так как данный / САВ = / DСА, то и он измеряется половиной дуги СА</span>
Пусть дан ромб АВСД, тогда АВ=ВС=СД=АД=8
т.О - пересечение диагоналей
ОН = 2, ОН⊥АД
Найти S (АВСД)
Ромб состоит из 4 равных треугольников.
Рассмотрим ΔАОД - прямоугольный
S(АОД)=1\2 * АД * ОН = 1\2 * 8 * 2 = 8 (ед²)
S(АВСД) = 8 * 4 = 32 (ед²)