Дано: AB=BC Внешний угол треугольника равен 70°
Найти: углы ∆
Решение:
1) Если АB=BC, то треугольник ABC равнобедренный при основании АС
2) Если ∆ равнобедренный, то углы при основании равны
3) Так как внешний угол равен сумме углов ∆ с ним не смежным, то
<А+<С=70°
А так как А=С
Следовательно <А=<С=35°
4) А так как сумма углов треугольника равна 180° то
<В=180°-(<А+<С)=180°-70°=110°
Ответ:110°;35°;35°
Находим апофему А = √(10² - (12/2)²) = √(100 - 36) = √64 = 8.
Периметр основания Р = 6а = 6*12 = 72.
Тогда площадь боковой поверхности этой пирамиды равна:
Sбок = (1/2)РА = (1/2)*72*8 = 288 кв.ед.
Смежные углы - углы, у которых одна сторона общая. Сумма смежных углов равна 180°.
Отношение смежных углов в задании 2:3 - всего 5 частей.
Найдем, сколько градусов одна часть: 180/5 = 36°
Нам нужно найти больший угол, состоящий из 3 частей: 36*3 = 108°
Ответ: 4