Решение на фото!
_______________________________
удачи))
Понравилось решение?Жми ЛУЧШИЙ!)
(13x-11y+10z)-(-15x+10y-15z)=13x-11y+10z+15x-10y+15z=28x-21y+25z
(x-1)(x²+x+1)-x²(x-1)=0
x³-1³-x³+x²=0
x²-1=0
(x-1)(x+1)=0
x-1=0 x+1=0
x₁=1 x₂=-1
Ответ: -1; 1
Воспользуемся преобразованием произведения синусов в сумму:
<h2>sinα · sinβ = ¹/₂ · (cos(α - β) - cos(α + β))</h2>
¹/₂ · (cos(-5x) - cos(7x)) = ¹/₂ · (cos(5x) - cos(11x))
cos5x - cos7x = cos5x - cos11x
Сократим обе части на cos5x:
- cos7x = -cos11x
cos7x - cos11x = 0
Воспользуемся преобразованием разности косинусов в произведение:
2cosx9x · cos2x = 0
cos9x · cos2x = 0
Произведение равно нулю, когда хотя бы один из множителей равен нулю:
<h2>cos9x = 0</h2>
9x = π/2 + πn, n ∈ Z
x = π/18 + πn/9, n ∈ Z
<h2>cos2x = 0</h2>
2x = π/2 + πn, n ∈ Z
x = π/4 + πn/2, n ∈ Z