S=1\2*(BC+AD)*h
S=1\2(3+8)3=1/2*33=16,5
Решение задачи во вложенном файле.
Стороны треугольника относятся так же, как и его средние линии. Отсюда отношение сторон 5х+7х+8х=500; 20х=500; х=25.
Наименьшая сторона составляет 5х см. Её длина 5*25=125 см.
Ответ: 125 см.
ЗАДАЧА 1 Основа рівнобедреного трикутника дорівнює 24см, а проведена до неї висота -16см. Знайдіть радіус кола, вписаного в трикутник.
Решение:
Боковая сторона нашего треугольника по Пифагору равна √(16²+12²) = √400 =20см.
По формуле радиуса вписанной окружности имеем:
r = b/2*√(2a-b)/(2a+b), где b - основание, а - боковая сторона.
r= 24/2*√(40-24)/(40+24) = 6см.
ЗАДАЧА 2 Діагональ, бічна сторона і більша основа рівнобедреної трапеції дорівнюють відповідно 40см, 13 см і 51 см. Знайдіть радіус кола, описаного навколо трапеції.
Решение:
Есть фрмулы радиуса описанной окружности трапеции по сторонам и диагонали:
R = adc/4√p(p-a)(p-d)(p-c), где a - боковая сторона, d- диагональ, с - большее основание. p = (a+d+c)/2 = 52.
R = 26520/(4*√52*39*12*1) = 6630/√24336 = 6630/156 = 42,5см.
Сумма внутренних углов многоугольника вычисляется по формуле
1) 13-угольник (n=13)
2) 10-угольник (n=10)