Проведем высоту и обозначим ее h. Тогда высота верхнего треугольника над квадратом будет h-5.
Данный тр-к и маленький тр-к над квадратом подобны, т. к. сторона, параллельная основанию, отсекает тр-к, подобный данному.
Из подобия тр-ка следует пропорциональность сходственных сторон:
<span>9/5=h/(h-5); 9(h-5)=5h; h=45/4=11,25 см. вроде так
</span><span>
</span>
Биссектриса, проведенная из вершины угла, отсекает от параллелограмма равнобедренный треугольник.
Отсюда треугольники АВF и СДF равнобедренные, cледовательно, AB=BF, CF=CD.
Но также по свойству параллелограмма AB=CD, значит, BF=FC=9:2=4,5 см.
Р=2*(9+4,5)=27 см.
Ответ: 27 см.
Дано: прямоугольная трапеция АВСД. S - ?
S=(ВС+АД)*СД/2 - полусумма оснований на высоту.
Рассм. ΔВСД; по т.Пифагора ВС²+СД²=ВД²
СД²=11²-9²=(11-9)(11+9)=20*2; СД=√40=2√10
S=(12+9)*2√10/2=21√10 - это ответ.
Задача не имеет решений.
Диагональ трапеции с боковой стороной и основанием образует треугольник. Условие существования треугольника - сумма длин меньших сторон должна быть больше длины большей стороны.
6+4=10=10 - такой треугольник не существует - решений нет.