Из тупых углов трапеции опустим высоты ВМ и СН на большее основание АД.
МН равно ВС.
Поскольку по условию задачи АД=2ВС, <u>АМ+НД=МН</u>
Примем меньший катет треугольника АВМ за х.
Он противолежит углу 30 градусов.
Отсюда АВ=СД=2х.
АМ+НД=ВС= 2х
ВС=2х
АД=4х
Сложим все эти стороны:
АВ+ВС+АД=2*2х+2х+4х
10х=50
х=5
АД=5*4=20 см
Ответ: <u>Большее основание трапеции равно 20 см</u>
т.к. треугольник ABC прямоугольный,а угол ACB=60 градусов, то tg60=AB/BC, AB=tg60*BC, AB=(корень из 3)*(4корня из 3)=12, AB=12
Здесь получается довольно интересный чертёж) Диагональ одновременно является высотой. получается два прямоугольных треугольника, в котором углы 30 и 60 градусов. Мы знаем, что сторона, лежащая напротив 30 градусов, равна половине гипотенузы, поэтому эту сторону напротив 30 градусов отмечаем как х, а гипотенузу как 2х. Получается 2х+2х+х+х=72, 6х=72, х=12. Значит, две стороны по 12 см и две по 24 см)
Ответ: 12 см, 12 см, 24 см, 24 см.
так как угол A = 60 ⇒ угол B = 30
тогда AC=1/2AB = 1/2*10 = 5 см
SinA=BC/AB ⇒BC=SinA*AB=Sin60*10=(√3/2)*10=5√3 см
CH=BC*AC/AB=5*5√3/10=25√3/10=2.5√3 см
<u>сторона BC равна 5√3 см, а высота к гипотенузе 2,5√3 см</u>
У этих треугольниках одинаковые углы и стороны