1) О(x; y) - центр
АО=ОВ=r - радиус
х=(1+7):2=4
у=(5+3):2=4
О(4;4)
2) А(1;5)
О(4;4)
|АО|=√(4-1)²+(4-5)²=√3²+(-1)²=√9+1=√10
Если диагональ трапеции делит среднюю линию в отношении 2 : 5, то и основания соотносятся как 2 : 5.Разность оснований трапеции равна 2 * 12 * cos 60° = 12 см.Положив, что основания трапеции равны 5 * Х и 2 * Х, получаем уравнение5 * Х - 2 * Х = 3 * Х = 12, откуда Х = 4 .Итак, основания трапеции 2 * 4 = 8 см и 5 * 4 = 20 см, а средняя линия<span>(8 + 20) / 2 = 14 см.</span>
Чтобы решить эту задачу, надо знать, что биссектриса делит угол на равные части, и что накрестлежащие углы при двух паралельных прямых и секущей равны.
на прямой c слева поставим точку K, чтобы было удобно указывать на углы.
угол BAK равен 40 градусов, как вертикальный. прямая - это 180 градусов, 180-40=140, это угол BAC, биссектриса делит его на 2 равных угла, 140:2=70градусов, BAO и OAC. угол 2 - накрестлежащий углу OAC, он тоже равен 70. угол 3 - накрестлежащий углам OAB+BAK, т.е. угол 3=70+40=110 градусов, ну а угол 1 накрестлежащий угла BAK, который равен 40 градусов, значит угол 1 тоже равен 40 градусов. значит:
угол 1=40, угол 2=70, угол 3=110.
найдем уравнения диагоналей
x/4=(y-3)/-4
-4x=4y-12
-x+3=y
k=-1 b=3
Дано:
- окружность с центром О и R = 8 см,
- хорда АВ = 9 см,
- <span>точка С такая,что AC:BC=1:4.
Находим расстояние ОД от центра окружности до хорды АВ (точка Д - середина АВ).
ОД = </span>√(R² - (AB/2)²) = √(64 - 4.5²) = √(64 - (9/2)² = √(175/4) = 5√7/2 см.
Обозначим СА = х.
Из условия СА/СВ = 1/4 находим:
х/(х + 9) = 1/4,
4х = х + 9,
3х = 9,
х = 9/3 = 3 см.
<span>Длина отрезка СД равна:
СД = 4,5 + 3 = 7,5 см.
Тогда искомое расстояние СО равно:
СО = </span>√(СД² + ОД²) = √((225/4) + (175/4)) = √(400/4) = 10 см.<span>
</span>