<span> Обозначим хорду <em>АВ</em>, диаметр <em>АС</em>, центр окружности - <em>О</em>. Проведем к центру окружности радиус <em>ВО</em>. </span>
<span>Угол АОВ опирается на дугу=90°, поэтому </span>
<span><em>∆ АОВ</em> - <u>прямоугольный равнобедренный</u> с гипотенузой АВ=3√2 ( т.к. АО=ВО - радиусы). </span>
<span>r=ВО=АВ•sin 45°=(3√2)•√2/2.</span>⇒<em>r=3</em>
<span><u>Длина окружности</u> L =2•πr=<em>6π</em></span>
<span>Хорда стягивает угол =90°, т.е. 1/4 окружности, поэтому дуга АВ=12π:4=<em>1,5π</em></span>
Если одна стороно паралельна с другим то 2 сторона ровна
D = 40см - большая диагональ
d = 6x - меньшая диагональ
a = 5х - сторона
α - острый угол ромба
По теореме косинусов d² = a² + a² - 2а² · сosα
36x² = 25x² + 25x² - 50x² · cos α
36 = 50 - 50 · cosα
50cosα = 14
cosα = 7/25
sinα = √(1 + 49/625) = √( 576/625) = 24/25
Площадт ромба S = 0.5D · d = a² · sinα
0.5 · 40 · 6x = 25x² · 24/25
24x = 120
x = 5
Сторона ромба 5х = 25(см)
Площадь ромба S = a² · sin α = a · h
Отсюда h = a · sin α = 25 · 24/25 = 24(см)
Высота ромба h = 24cм