циліндр, осьовий переріз квадрат АВСД, АС=4*корінь2, трикутник АСД, АД=СД=корінь(АС в квадраті/2)=корінь(32/2)=4, АД=діаметр основи циліндра, радіус =АД/2=4/2=2, площа основи=пі*радіус в квадраті=2*2*пі=4пі
48:4=12
12:2=6
6+12=18
ответ: 18 см, 18 см, 6 см, 6 см
1)Если боковые грани наклонены к плоскости основания под одним углом, то:
в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр. Вписать окружность можно
- в любой треугольник;
- в четырёхугольник, если суммы его противоположных
сторон равны;
- в правильный многоугольник,
таким образом, из указанных фигур нельзя вписать в прямоугольник.
2.!!! на рис. не обращайте внимания на числа.
1) Площадь полной поверхности пирамиды равна сумме площадей бок. пов-сти и основания, т.е. S полн= Sбок + S осн.
S бок = S1+S2+S3, где S1, S2, S3- площади ΔАВS, ΔВСS, ΔАСS cоответственно.
Т.К.грани равнонаклонены к проскости основания , то высоты боковых граней
равны.
2) Из Δ МНS- прям.: МS=MH/cos 60⁰, MH = r= (a+b-c)/2, где a,b,c- катеты и гипотенуза основания
МН= (3+4-5)/2=1 (!!! Прям. тр-к со сторонами 3,4,5- египетский)
MS= 2 , тогда S1=½·5·2=5 ; S2= ½·3·2=3 ; S3 =½·4·2=4
S бок= 5+3+4=12 (кв.ед.); S осн= ½·3·4=6 (кв.ед.)
S полн.=12+6= 18 (кв.ед).
треугольники АКР и АВС подобны по двум углам (А-общий, <С=<Р как соответственные при параллельных прямых)с коэффициентом подобия k=3/2. Cоставим пропорцию:
АВ/АК=3/2 (АВ=2+1=3)
9/АК=3/2
АК=9*2/3=6см
ВС/КР=3/2
12/КР=3/2
КР=12*2/3=8см
АС/АР=3/2
15/АР=3/2
АР=15*2/3=10 см
<span>РΔАКР=10+8+6=24см</span>
1 - может быть верным, если секущая пересекает их перпендикулярно и по определению односторонних углов, в ином случае не верно
2 - не верно, по определению секущей линии (скорее всего, т.к. ничего не сказано о том, что пересечение происходит под прямым углом)
3 - верно, по определению соответственных углов
4 - не верно, по определению односторонних углов