Решение :
А+<В+<С=180°
<С=180-90°-37=53
это первые задача
☝☝
АВСДЕ - пирамида. ЕО=6 см, ∠ЕАО=45°.
Тр-ник ЕАО равнобедренный, ЕО=АО,значит ЕА²=ЕО²+АО²=72.
а) ЕА=6√2 см - боковое ребро.
В тр-ке АВС АС=2АО=12 см. АС - диагональ квадрата, значит его сторона: АВ=АС/√2=12/√2=6√2 см.
В тр-ке ЕАВ опустим высоту ЕМ. Т.к. тр-ник равнобедренный, знач. АЕ=ЕВ=АВ/2=6√2/2=3√2 см.
В тр-ке ЕАМ ЕМ²=ЕА²-АЕ²=72-18=54
ЕМ=√54 см.
S(ЕАВ)=АВ·ЕМ/2=6√2·√54/2=6√27 см².
б) Sбок=4S(ЕАВ)=24√27 см².
Осевое сечение цилиндра - прямоугольник со сторонами, равными диаметру основания и высоте. Таким образом, нужно найти диагональ прямоугольника со сторонами 6 и 8. По теореме Пифагора она равна 10.
Наибольшее число внутренних острых углов может быть только 3
У равностороннего треугольника все стороны и углы равны между собой, внешние углы треугольника АВС также равны между собой и равны 120°
Стороны треугольников МКВ, МАР и РСК также равны МВ=СК=АР=3*АВ,
МА=КВ=СР=2*АВ - следовательно ΔМКВ=ΔМАР=ΔРСК.
У равных треугольников соответствующие стороны равны, значит
МР=РК=МК. Что и требовалось доказать.