Задача №1 :
Площадь грани 2*4sqrt3 = 8sqrt3
Площадь основания (1/2)((4sqrt3)^2)sin60 = 12sqrt3
Сумма площадей всех поверхностей:
<span>2*(12sqrt3) + 3*(8sqrt3) = (24+24)sqrt3 = 48sqrt3
</span>
<span>Через точку пересечения диагоналей прямоугольника АВСD проведен перпендикуляр SO к плоскости АВС. <u>Найти SA</u>, если SO=3 см, BD=8 см.</span>
________
<em>В прямоугольнике диагонали равны и точкой пересечения делятся пополам.</em> АС=ВD=8 ⇒
АО=4 см
По условию SO⊥ плоскости АВС, точка О принадлежит АС ⇒ SO⊥АС.
Δ SOA- прямоугольный с отношением катетов 3:4, это "египетский" треугольник, и его гипотенуза SА=5 ( можно проверить по т.Пифагора)
Найдем ВС по т. пифагора
АВ^2='BC^2+AC^2
BC=корень из (AB^2-AC^2)
BC= корень из (25-24)= 1
чтобы найти синус А, мы воспользуемся т. синусов(синус=противоположный катет делить на гипотенузу)
синусА =ВС/АВ =1/5
Ответ:
9 м.
Объяснение:
Расстояние от крыши дома до зёрен и от фонаря до зерен представляет собой гипотенузы прямоугольных треугольников АВС и КМС, как показано на рисунке. Если голуби при одинаковой скорости подлетели к корму одновременно, значит, эти гипотенузы равны, ВС=СК.
АВ - стена дома, МК - фонарь. АВ=12 м, МК=9 м.
Пусть искомое расстояние от дома до зерен АС=х м, тогда расстояние от основания столба до зерен СМ=21-х м.
По теореме Пифагора имеем равенство
ВС²=12²+х², а СК²=9²+(21-х)²
Поскольку ВС=СК, равенство принимает вид
12²+х²=9²+(21-х)²
144+х²=81+441-42х+х²
42х=378
х=9.
Расстояние от дома до зёрен 9 м.