При пересечении двух прямых образуются 2 пары углов, пусть в нашем случае пара острых (равных, т.к. вертикальные) и пара тупых (аналогично, равных). Пусть острый угол равен х градусов По условию "Сумма градусных мер двух образовавшихся углов равна 102°". Это не могут быть острый и тупой углы, т.к. они смежные и сумма их равна 180 градусов. Это также и не два тупых, т.к. каждый из них больше 90 градусов, значит их сумма больше 180 градусов. Значит, сумма двух острых углов равна 102 градуса, тогда 2х=102, значит х=51, а тупые углы равны по (180-51=49) градусов
Раз угол 45°, то диаметр основания равен высоте цилиндра. По формуле находим
x^2+x^2=(6√2)^2
2x^2=72
x^2=36
x=6
V=π*(6/2)×6=18π
Решение задания приложено
№2:
Так как a||b, то углы ABC и CDE равны (свойство секущей и двух параллельных прямых), ⇒, угол CDE=70.
Так как угол ACD=115, а угол АСЕ=180(прямой), то угол DCE=ACE-ACD=180-115=65.
Так как в треугольнике 180 градусов, то угол CED=180-65-70=45.
Треугольники АВС и СDE равны, ⇒, угол ВАС=45, угол АСВ=65
№4:
В треугольнике АВС: угол АВС=40, а АСВ=90,⇒, ВАС=180-90-40=50.
В треугольнике ВCD: DBC=40, BDC=90,⇒, DCB=180-90-40=50
В треугольнике ADC: ADC=90, DAC=50,⇒,ACD=180-90-50=40
№3:
В треугольнике КМР прямая МН делит угол М пополам,⇒, углы КМН и РМН равны = 75.
Так как угол МНР=15, а угол КНР=180(прямой), то КНМ=180-15=165.
Значит, в треугольнике КМН: угол К=180-75-165=-60,⇒, угол МКН - тупой.
В треугольнике МНР: МНР=15, НМР=75,⇒, угол Р=180-75-15=90,⇒, угол МРН-прямой.
Что бы найти площадь параллелограмма ,есть формула. S=ah a-сторона пар-мма,h-высота.