Для получения фигуры А1В1С1D1, симметричной фигуре АВСD относительно точки D (центральная симметрия), надо
для точек фигуры найти точку, симметричную данной, то есть лежащую на одной прямой с точкой симметрии (ее центром) на равном от этой точки расстоянии.То есть, например, для точки А найти точку А1 такую, что точка D является серединой отрезка АА1. Если центр симметрии принадлежит данной фигуре, то эта точка отобрвжается в себя, то есть остается неизменной.
Для получения фигуры А1В1С1D1, симметричной данной АВСD относительно какой-либо прямой (осевая симметрия), надо точкам данной фигуры найти точки, симметричные им относительно данной прямой. Для этого из точки на фигуре опускают перпендикуляр и на его продолжении откладывают точку на равном расстоянии от прямой. Точки фигуры, лежащие на прямой (оси симметрии) остаются неизменными.
Сумма всех углов в любом четырехугольнике равна 360°
=> х=360-(52+128+52)=128°
TgA = sinA/cosA.
ctgA = cosA/sinA
tgA + ctgA = sinA/cosA + cosA/sinA = (sin²A + cos²A)/cosA•sinA = 1/sinA•cosA, т.к. sin²A + cos²A = 1 - это основное тригонометрическое тождество.
Тогда tgA + ctgA = 1/sinA•cosA.
Площадь треугольника abc вычисляется по формуле S=1/2ah. Для этого нам нужно найти высоту. Проведём высоту из вершины В. В равнобедренном треугольнике, высота проведенная из вершины В, также будет являться и медианой, разделяя сторону АС на две равные части. теперь найдём высоту (h) по теореме Пифагора:
16+x^2=25
x^2=9
x=3
Таким образом, мы нашли высоту. h=3. Теперь подставляем все в формулу площади. S=1/2*8*3=12
S=12-площадь треугольника
Решение в файле. Будут вопросы, спрашивайте ))