ΔАВС: АВ=34, ВС=32, медиана ВК=17 делит сторону АС на АК=КС=АС/2
Продолжим медиану BК за точку M и отложим отрезок КЕ= BК.
ΔАВК=ΔСКЕ по двум сторонам (АК=КС, ВК=КЕ) и углу между ними (<АКВ=<СКЕ как вертикальные)
Значит площадь Sавс=Sавк+Sсвк=Sске+Sсвк=Sвсе
Площадь ΔВСЕ можно найти по ф.Герона:
Известно, что ВС=32, ВЕ=17*2=34, ЕС=АВ=34
Полупериметр р=(32+34+34)/2=50
Sвсе =√50*(50-32)(50-34)²=√50*18*16²=30*16=480
Ответ: 480
Треугольники АВС и DEF равнобедренные с равными углами при вершинах В и Е.
Значит у них равны и углы при основаниях. То есть <BAC=<BCA=<EDF=<EFD.
Углы ВАС и ЕDF - соответственные при прямых АВ и DЕ и секущей АF.
Следовательно, прямые АВ и DE параллельны.
10*12= 120 см2
Ну і все в рівнобедреного трикутника бічні сторони рівні