2x-4-6x-3>5x
2x-6x-5x>3+4
-9x>7
-x>7/9
X<7:9
= [(tg7π/24 - tgπ/24)(tg7π/24 + tgπ/24)] / [(1-tg7π/24*tgπ/24)(1+tg7π/24*tgπ/24)] = [(tg7π/24 - tgπ/24)/(1+tg7π/24*tgπ/24)] * [(tg7π/24 + tgπ/24) / (1-tg7π/24*tgπ/24)] = tg(7π/24 - π/24) * tg(7π/24 + π/24) = tgπ/4 * tgπ/3 = 1 * √3 = √3
используя формулу приведения cos x=sin(90-x)
cos(60 - a) - sin(a+30)=sin(90-(60 - a)) - sin(a+30)=sin (90-60+a)-sin(a+30)=sin(a+30)-sin(a+30)=0