Итак, представим числа 33 и 77 в виде суммы десятков и единиц:
33=30+3, 77=70+7.
Мы видим, что 33^33+77^77=(30+3)^33+(70+7)^77=30^33+3^33+70^77+7^77...
Т.к. 30 и 70 в любой целой положительной степени делятся на 5, акцентировать внимание мы будем лишь на степенные 3 и 7.
Считать степень слишком долго, да и числа неудобные получатся, поэтому прибегнем к хитрости...
Будем возводить каждое число на 1 степень и смотреть как изменяется последняя цифра. Сначала число 3...
3^1=3
3^2=9
3^3=27
3^4=81
3^5=243...
Мы замечаем, что последняя цифра у 3^1 и 3^5 совпадает. Следовательно, это закономерность: последние цифры в степенях тройки будут 3, 9, 7, 1, а дальше они повторяются. Т.е. каждые 4 степени повторяются степени. Делим степень (33) на число разных последних цифр (4) и получаем 8, остаток 1. Обращаем внимание на остаток, ведь 8 - это число повторений... Т.к. остаток - 1, смотрим на первую цифру в нашей закономерности... Это 3. Позже сложим её с цифрой от 7.. Таким же образом находим закономерность последних цифр у степеней семёрки: 7, 9, 3, 1.
77:4= 19(ост.1). Следовательно, первая цифра. Это 7. Теперь складываем 7 и 3 и делим их на 5.
(7+3)/5=10/5=2(ост.0). Делаем вывод, что сумма 33^33 и 77^77 при делении на 5 дает остаток 0.
Ваше задание решено!
Ответ с решением в вложении
Отвеееет в фотооографиииии
У^2+7y-5>3^1
y^2+7y-5>3
y^2+7y-5-3>0
y^2+7y-8>0
y^2+7y-8=0
D=49+32=81=9^2
y1=1
y2=-8
Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами. Приведение подобных слагаемых,раскрытие скобок.Правила выполнения этих преобразований: чтобы привести подобные слагаемые,надо сложить их коэффициенты и результат умножить на общую буквенную часть; если перед скобками стоит знак плюс,то скобки можно опустить,сохранив знак каждого слагаемого,заключённого в скобки; если перед скобками стоит знак минус,то скобки можно опустить,изменив знак каждого слагаемого,заключённого в скобки.