Дано: ОСКD - параллелограмм.
Если у четырехугольника пара противоположных сторон параллельны и равны, то четырехугольник – параллелограмм.
Следовательно, АОКD и ВОКС - параллелограммы.
Значит ВС=ОК=АD.
Но ВК - биссектриса угла и диагональ параллелограмма ВОКС, отсюда ВС=СК=ВО.
Тогда ВD=2ВС.
С другой стороны АК - биссектриса угла и диагональ параллелограмма АОКD, отсюда АD=DK, но АD=ВС, значит DK=CK и ОСКD -ромб.
Значит СD перпендикулярна ОК.
Подкорректируем рисунок (рис.2)
Тогда и ВС перпендикулярна СD и АВСD - прямоугольник, в котором диагонали равны удвоенной стороне ВС(АD).
Из этого следует, что <BDC=<ACD=30°, а <СBD=<СAD=60°.
ВК и АК - биссектрисы, значит <ABK = <BAK = 60°.
Итак, в треугольнике АВК два угла при стороне АВ равны по 60°, следовательно и угол АКВ=60°.
Ответ: угол АКВ = 60°.
если обозначить углы как х и у то можно составит систему: х+у=180 у=180-х х-у=50 х-(180-х)=50 2х=50+180 2х=230 х=115 у=65 <span>Ответ: углы равны 115 и 65 градусов. </span>
сформулируйте и докажите теорему обратную теореме о свойстве касательной. ... Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Если сформулировать обратно, то радиус, проведенный в точку касания, перпендикулярен касательной к окружности
1)по теореме Пифагора:225=144+х^2
х^2=225-144
х=9
2)sin=9/15=0.6
3)cos=12/15=0.8
4)tg=9/12=0.75
6√2*2=12√2
или задание не в этом?