4α+α=90°
5α=90°
α=18°
4α=72°
Ответ: 18° и 72°.
1.Обозначим ромб АВСD, а точка пересечения диагоналей - О, угол ОВС=50. У ромба все стороны равны, диагонали являются биссектрисами и противоположные углы равны, значит, если угол ОВС = 50, то угол АВС = 50+50=100., и противоположный ему угол АDС = 100. Рассмотрим треугольник ВОС: угол ОВС=50, ВОС = 90-->ВСО=180-90-50=40, следовательно, угол ВСD=40+40=80 и противоположный ему угол ВАD=80.
2.АВСD - прямоугольник, О - точка пересечения диагоналей АС и ВD, угол ОСD = 40. В прямоугольнике диагонали равны и точкой пересечения делятся пополам. Рассмотрим треугольник СОD: ОС=ОD --> этот треугольник равнобедренный, значит у него углы при основании равны и угол ОСD=ОDС. Сумма углов треугольника равна 180 градусам, 180-40-40=100 - угол СОD- острый угол при пересечении диагоналей.
<span>конечно нет! ас=5, а ав+вс=7, значит точка в не между а и в</span>
(смотри рисунок)
Пусть АВ, AD и BC - x. Тогда DK = (DC-x)/2
Теперь рассмотрим треуг. ADK - прямоугольный. Если AD = x, DK = (DC-x)/2, а угол D = 70°, то:
cosD = DK/AD;
cos70° = (DC-x)/2*AD
0.342 = (10-x)/2x
0.684x = 10-x
1.684x = 10
<span>x = 5.94</span>
<span>
</span>
<span>
</span>P = AB+BC+CD+DA = 3*x + 10 = 17.8+10 = 27.8
Ответ: P = 27.8
Гипотенуза 30см.Надо знать свойства касательных, проведенных из одной точки к окружности.Центр окружности, описанной около прямоугольного треугольника совпадает с серединой гипотенузы. Следовательно диаметр описанной окружности 30 см, тогда радиус 15 см.