Если окружность КАСАЕТСЯ отрезка DK и одновременно проходит через точку D,
значит точка D является ТОЧКОЙ КАСАНИЯ. По теореме о касательной и секущей: квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью, то есть DK²=KC*KJ=15*24=360.
Итак, DK=√360=6√10. Найдем DC по теореме косинусов:
DC²=DK²+KC²-2*DK*KC*Cos(DKC). DC²=360+225-2*6√10*15*(1/5)√10=225. DC=15.
Следовательно, треугольник DCK равнобедренный (DC=KC) и значит
<CDK=<CKD(<JKD). То есть Cos(CDK)=(1/5)*√10.
Градусная мера <CDK равна половине градусной меры дуги DC (по свойству угла
между касательной и хордой, проведенной в точку касания), а градусная мера
центрального угла DOC равна градусной мере дуги DC. То есть <DOC=2*<CDK.
В нашем случае Cos(<CDK)=(1/5)*√10. Тогда
Sin(<CDK)=√(1-Cos²(<CDK))=√(1-10/25)=√(15/25)=(1/5)*√15.
По формуле приведения cos2a=cos²a-sin²a.
В нашем случае Cos(<DOC)=10/25-15/25=-5/25=-0,2.
В треугольнике ОDC по теореме косинусов
DC²=OD²+OC²-2*OD*OC*Cos(<DOC) или
225=2R²-2R²*(-0,2) или 225=2R²(1+0,2). Отсюда R²=225/2,4.
R= 15/√2,4≈9,677≈9,7.
Ответ: радиус проведенной окружности равен 9,7.
Второй вариант решения:
Продлим DO до пересечения с окружностью в точке М. Углы <DMC=<CDK (Так как оба опираются на одну дугу DC и равны половине ее градусной меры. <DMC - как вписанный, а <CDK - по свойству угла между касательной и хордой, проведенной в точку касания). Тогда Sin(DMC)=Sin(<CDK)=(1/5)*√15. (Найдено в первом варианте).
Но вписанный треугольник DMC прямоугольный, так как DM - диаметр. Тогда DM=DC/Sin(DMC) = 15/[(1/5)*√15]=5√15. DM - диаметр.
Значит радиус R=(5/2)*√15 ≈9,68≈9,7.
Ответ: радиус проведенной окружности равен (5/2)*√15.
Поскольку треугольник прямоугольный (90 градусов) и один из углов равен 45 град., то третий угол будет равен 180-90-45=45 градусов. т.е. это треуг-к равнобедренный ( 2 стороны равны), прямоугольный.
по теореме Пифагора квадрат гипотенузы = сумме квадратов катетов будет: 20 в квадрате=400
400:2=200 - квадрат 1 катета и такой же у 2 катета
длина каждого катета равна корню квадратному из 200
1* Правильные: 1,4,5
2* Угол 2= 132* т.к. треугольник равнобедренный, значит углы при основании равны, а угол 2 смежный с углом 3 ( который при основании (не 1)), а их сумма 180*, значит угол 2 = 180 - 48 = 132*