А) подставляем в оба уравнения
2*3+(-1) = 5
3-(-1) = 4
Да, является.
б) 2*(-1)-3 = 4
-5≠4 - нет. Не является
Ответ:
f(x)-чётная
Объяснение:
f(x)=cosx+x²+|x|
f(-x)=cos(-x)+(-x)²+|-x|=cosx+x²+|x|=f(x)
f(-x)=f(x) => f(x)-чётная
Дана функция у=2х³ <span>+ 3х</span>² <span>+ 2.
Её производная равна:
y' = 6x</span>² + 6x = 6x(x + 1).
Приравняв производную нулю, находим 2 критические точки:
х = 0 и х = -1.
Тем самым мы определили 3 промежутка монотонности функции:
(-∞; -1), (-1; 0) и (0; +∞).
Находим знаки производной на этих промежутках.
<span>Где производная положительна -
функция возрастает, где отрицательна - там убывает. Точки, в которых происходит
смена знака и есть точки экстремума - где производная с плюса меняется на минус
- точка максимума, а где с минуса на плюс - точки минимума.
</span><span><span><span>
x = -2
-1
-0,5
0 1
</span><span>
y' =
12
0 -1,5
0 12.
Как видим, максимум функции в точке х = -1, минимум в точке х = 0.
Найдём значения функции в этих точках и на границах заданного промежутка.
</span></span></span><span><span><span>
x = -2 -1
-0,5
0
</span><span>
y =
-2 3 2,5
2.
Ответ: </span></span></span><span>наибольшее и наименьшее значение функции у=2х^3+3х^2+2 на отрезке [-2;0] равны 3 и -2.</span>
4х-8-2х+3=0
2х-5=0
2х=5
х=2,5