S=b^2*1/2sin(2a), где b -сторона равнобедренного треугольника, а - угол основания.
1) S=12,8^2*1/2sin60
2) S=12,8^2*1/2sin90
3) S=12,8^2*1/2sin120
Ответ: 1) 40,96√3; 2) 81,92; 3) 40,96√3
Треугольники BOC и DOA подобны, к=9/16, значит BO/OD=9/16
9x+16x=16
x=16/25
BO=5,76
Каноническое уравнение прямой прямой (x+8)/1=(y-5)/(-2)=z/3 переходим к параметрическим уравнениям этой прямой.
х = t - 8, y = -2t + 5, z = 3t и подставляем в уравнение плоскости.
t - 8 -2t + 5 + 3t + 1 = 0,
2t - 2 = 0, t = 2/2 = 1.
Отсюда получаем координаты точки Р пересечения заданных прямой и плоскости: х = 1 - 8 = -7, y = -2*1 + 5 = 3, z = 3*1 = 3.
Тогда уравнение прямой, проходящей через точку М (-1,1,1) и точку пересечения прямой (x+8)/1=(y-5)/(-2)=z/3 и плоскости x+y+z+1=0, имеет вид (x + 1)/(-6) = (y - 1)/2 = (z - 1)/2.
Ответ в) Через любую точку пространства проходит единственная плоскость перпендикулярная к данной прямой
Строим четырёхугольник MENF.
Из свойства пересечения диагоналей и деления в точке пересечения пополам, этот четырёхугольник - параллелограмм.
Из свойств и определения параллелограмма - противолежащие стороны параллельны.