Теорема собственно: средняя линия трапеции параллельна её основаниям, а длина её равна полусумме длин этих оснований.
Доказательство. Дана трапеция АВСD и средняя линия КМ (cм.рис.). Через точки В и М проводим прямую, а сторону AD продолжаем через точку D до пересечения с ВМ. Очевидно, что треугольники ВСМ и МРD равны по стороне и двум углам (СМ = МD, ∠ВСМ = ∠МDР — накрест-лежащие, ∠ВМС = ∠DМР - вертикальные), поэтому ВМ = МР или точка М - середина ВР.
КМ является средней линией в треугольнике АВР. По свойству средней линии треугольника КМ параллельна АР и в частности АD и равна половине АР, что записывается как
КМ = 1\2 AP = 1\2 (AD + DP) = 1\2 (AD + BC), ч.т.д.
1. Пусть дан Δ АВС, СМ - медиана, ∠С=90°, ∠А=28°
Найти ∠ВСМ.
∠В=90-28=62°.
Рассмотрим Δ ВМС - равнобедренный по свойству медианы, проведенной из вершины прямого угла. СМ=АМ=ВМ.
Значит, и углы при основании ВС равны.
∠ВСМ=∠В=62°
2. КР - средняя линия, АС=2КР=23*2=46 см.
В ромбе сумма углов
BAD + ABC = 180
<span>И один в два раза больше
</span>BAD * 2 = ABC
---
BAD + BAD * 2 = 180
BAD * 3 = 180
BAD = 60°
ABC = 120°
Итак, угол С в треугольнике ВСД = 60 градусов. Как, впрочем и все остальные углы.
Отрезок ОР является средней линией треугольника ВСД - точка Р - медиана его стороны, точка О - пересечение диагоналей, которые в параллелограмме точкой пересечения делятся пополам.
Значит, сторона ВС в 2 раза длинне ОР, и равна 4 см
А так как треугольник ВСД равносторонний, то и диагональ ВД равна 4 см