5(5с-3)-(13с+6)=25с-15-13с-6=12с-21
<span>Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.</span>
-3x(2-x)+(3x+1)(x-2)=-6x+3x*2+3x*2-6x+x-2=6x*2-11x-2=(x+1\6)(x-2)
d=121+48=169
sqrt169=13
x1=(11-13)\12=-1\6
x2=(11+13)\12=2
3(2x-1)*2+12x=3(4x*2-4x+1)+12x=12x*2-12x+3+12x=12x*2+3=3(4x*2+1)
<span>(х+3)*2-(x-2)(x+2)=x*2+6x+9-x*2-4=6x+5</span>
Пусть данное число АВ = 10 * А + В. Тогда число, записанное теми же цифрами в обратном порядке ВА = 10 * В + А.