Задача сильно облегчается тем, что высота треугольника в основании призмы, перпендикулярная основанию 24, это вообще самый маленький отрезок из всех, которые соединяют любую вершину треугольника с точкой противоположной стороны. Дело в том, что все такие отрезки, выходящие из концов основания, заведомо больше 13, поскольку угол при вершине - тупой. Высота к основанию равна 5 (там египетский треугольник со сторонами 5,12,13), и это кратчайший из возможных таких отрезков.
Поэтому высота призмы равна 5.
Площадь одного основания равна 5*24/2 = 60,
площадь всех боковых граней (24 + 13 +13)*5 = 250
Общая 2*60+250 = 370
Медиана
Медиана треугольника — это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.Медиана треугольника
Свойства медиан треугольника
Медиана разбивает треугольник на два треугольника одинаковой площади.
Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.
Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника.
Свойства высот треугольника
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
A4=a1*q^3
a2=a1*q
a3=a1*q^2
составляем систему:
a1*q^3-a1*q=30
a1*q^3-a1*q^2=24
a1*q(q^2-1)=30
a1*q^2(q-1)=24
a1*q(q-1)(q+1)=30
a1*q^2(q-1)=24
a1=24/q^2(q-1)
24*q(q-1)(q+1)/q^2(q-1)=30
24(q+1)/q=30
24(q+1)=30q
30q-24q=24
6q=24
q=4
a1=24/16*3=8/16=1/2=0,5
Ответ: а1=0,5; q=4
Ответ:
высота, проведенная ко второй сторон равна 3
Объяснение:
Если в треугольнике известна сторона и высота, проведенная к этой стороне - то площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты - S = 1/2а*h. Нам известны две стороны и одна высота.
составим уравнение: S1 = S1
1/2 * 12 * 1 = 1/2 * 4 * x, где х - неизвестная вторая высота
6 = 2x
x = 6 : 2
х = 3 высота, проведенная ко второй высоте
Во-первых, прямая l и AD не имеют общих точек, т.к. l не пренадлежит плоскости, а ad ей принадлежит, причём В не принадлежит AD, значит l не пересекает AD,во-вторых она ей и не параллельна,т.к. l пересекает плоскость ABCD, в точке В, лежащей на прямой параллельной AD, из этого следует, что l и AD -скрещивающиеся по признаку.