1/3×0,6+1/5×30= 0,2+6=6,2
сори сначала не увидела что там корни
Посмотрите,в чём сложность.
Функция упрощается,потому что в числителе трёхчлен,
который можно представить в формуле а(x-x1)(x-x2)(x-x3)(x-x4),
наверняка вы расписывали так трёхчлен второй степени.
Если вас смущает мой способ с дискриминантом - пожалуйста,решайте биквадратное уравнение(вводите t),лишь бы в формулу со скобками подставили корни.И да,a - коэф.при х^2,чаще его не бывает в ГИА.
Но если так будет - квадратичную функцию раскрывайте "фонтанчиком".
Иначе говоря,какая степень уравнения(большая),столько корней,т.е. скобок.
Дальше сокращаем.И ТА-ДАМ!Остаётся простая квадратичная функция.
Находим нужные нам точки:точки пересения с ох,с oy и самое главное - КООРДИНАТЫ ВЕРШИНЫ ПАРАБОЛЫ.Можно так и бросить,эксперту больше не надо.Но я строю табличку,чтобы график был более ровен и точен.
А что такое прямая y=m?
Прямая,параллельная оси ox(Т.Е.X-0,ЭТО БЫВШАЯ ЛИНЕЙНАЯ ФУНКЦИЯ,МЫ КАК БЫ НАПОМИНАЕМ ОБ Х)
А где будет одна общая точка с графиком?
Да как видно,она пройдёт через вершину параболы(забираем y).
Окончательный ответ:при m=-2.25.
Но это не точненько, если что сорен
ОДЗ
x+3>0
x+2>0
x>-2
log12 (x+3) + log12 (x+2)=1
log 12 ((x+3)(x+2)) = log12 (12)
(x+3)(x+2)=12
x^2 +5x-6=0
x1=-6 не удовл. ОДЗ
x2=1
5) График дан в приложении.
6.а)
(2πk+(π/6)) < x < (2πk+(2/3)π).
(2πk+(4/3)π) < x < (2πk+(11/6)π).
6.б)
(2πk-(π/2)) < x <(2πk-(π/4)).
7) arc sin(3x²-1) = arc sin(10x-4)
<span>3x²-1 = 10x-4
</span><span>3x²-10x+3 = 0.
</span>Квадратное уравнение, решаем относительно x: <span> Ищем дискриминант:</span>
D=(-10)^2-4*3*3=100-4*3*3=100-12*3=100-36=64;
Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√64-(-10))/(2*3)=(8-(-10))/(2*3)=(8+10)/(2*3)=18/(2*3)=18/6=3;
этот корень отбрасываем, модуль синуса не может быть больше 1.
x₂=(-√64-(-10))/(2*3)=(-8-(-10))/(2*3)= (-8+10)/(2*3)=2/(2*3)=2/6=1/3.