Подкоренное выражение корня чётной степени должно быть ≥ 0 .
Знаменатель дроби не должен равняться нулю, то есть:
1 - x ≠ 0
x ≠ 1
12 - 4x - x² ≥ 0
x² + 4x - 12 ≤ 0
Найдём корни квадратного трёхчлена и решим неравенство методом интервалов.
x² + 4x - 12 = 0
D = (- 4)² - 4 * 1 * (- 12) = 16 + 48 = 64 = 8²
(x - 2)(x + 6) ≤ 0
+ - +
_____________________________
- 6 2
x ∈ [- 6 ; 2]
Из этого ответа мы должны исключить x = 1
Окончательный ответ: x ∈ [- 6 ; 1)∪(1 ; 2]
1. а) 5xy³*(-2x²y)⁴ = 5xy³*16x⁸y⁴ = 80x¹⁺⁸y³⁺⁴ = 80x⁹y⁷
б) (2y-3x)² - (3x+2y)(2y-3x) = 4y²-12xy+9x²-6xy-9x²+4y²-6xy = 8y²-24xy
2. а) 4ab³-a³b = ab (4b²-a²) = ab (2b-a)(2b+a)
б) -9b-6b²-b³ = -b (9+6b+b²) = -b (b+3)²
3.
Здесь делаем всем НОЗ: 6.
Теперь, когда у нас стали одинаковые знаменатели, решаем только числитель:
3(5-x)+2(4x-3)-24 = 0
15-3x+8x-6-24 = 0
-3x+8x+15-6-24 = 0
-5x-13 = 0
-5x = 13
x = -2,6
4. Увы, задачу не понял.
5. y = 4x-7 - линейная функция, графиком является прямая.
y = x+83 - линейная функция, графиком является прямая.
Построим таблицы:
1) y = 4x-7
x | 0 1
y | -7 -3
y₁ = 4*0-7 = -7
y₂ = 4*1-7 = -3
2) y = x+83
x | 0 1
y | 83 84
y₁ = 0+83 = 83
y₂ = 1+83 = 84
Как строить координатную плоскость - думаю, не надо объяснять.
Вот решение )))))).......