<span>В равносторонний конус (диаметр основания конуса равен длине его образующей) вписан шар. Найдите отношение объема конуса к объему шара.
</span>==========================================================
Дано : a =2R =L (осевое сечение равносторонний треугольник)
---
V(к) / V(ш) =(1/3)*πR²*H / (4/3)*πr³ = R²*H / r³ = (L/2)²*(L√3)/2 / ( L√3)/6 )³ =9.<span>
( L _образующая конуса которая в данной задаче =2R)
----------
Радиус </span>окружности <span> вписанной</span> <span>в равносторонний треугольник
r =(1/3)*(a</span>√3)/2 =(a<span>√3) /6 , высота треугольника H =(</span>a√3)/2
<span>a _сторона треугольника
</span><span>----------
</span>
ответ: 9.
X^2-4x+4=0
(x-2)^2=0
x^2-4x+4=0
(x-2)^2=0
x-2=0
x=0+2
x=2
<span>X=4 x=9
+ _ +
————(4)————-(9)—————
x(-;4) U (9;)</span><span>(х-4)(х-9)>0;1)х-4>0;х>4. 2)х-9>0;х>9. Вдповдь: (-;4)(9;+)</span>
5x-1=x-5
- 4x=4
x= - 1
_________________