Такие системы решают методом замены переменной:
х+у=u
xy=v
Если
х+y=u,
возводим обе части в квадрат, получаем:
х²+2xy+y²=u²
отсюда
x²+y²=u²-2xy
или
х²+y²=u²-2v
Тогда
x³+ y³=(x+y)·(x²-xy+y²)=(x+y)·((x+y)²-3xy)=u·(u²-3v)
Система принимает вид
Возвращаемся к переменным х и у
Решаем квадратное уравнение
х²-3х+2=0
D=(-3)²-4·2=9-8=1
x₁=(3-1)/2=1 или х₂=(3+1)/2=2
y₁=3-x₁=3-1=2 y₂=3-x₂=3-2=1
Ответ. (1;2) (2;1)
Найдем производную в(т)=2т и вставим 2 вместо т, ответ 4
Подставляем:
<span>
5</span><span>·(-0.2)</span><span><span>²</span> - 2</span><span>·(-0.2):1 - 4</span><span>·(-0.2)=</span>
Решаем:
0.2-0.4:1-0.8=-1