Y(y-1)-(y-5)^2=2
y^2-y-(y^2-10y+25)=2
y^2-y-y^2+10y-25=2
9y-25=2
9y=27
y=3
1)Т.к бросают два раза то,0,5 *2=0,25
25%
2)------
3)
Ф-ла Бернулли - для независимых событий с постоянной вероятностью.
Здесь события зависимые.
Используй классическую формулу определения вероятности
Общее число исходов: число сочетаний из 12 по 9: С(9,12)
Благоприятных : С(5,8)*С(4,4)
Р(А)=С(5,8)*С(4,4)/С(9,12)
С(m,n)=n!/(m!*(n-m)!) -число сочетаний из n по m
36(x-1)^4 + 26x = 13x^2 + 12
36(x-1)^4 - 13x^2 + 26x - 12 = 0
36(x^4 - 4x^3 + 6x^2 - 4x + 1) - 13x^2 + 26x - 12 = 0
36x^4 - 144x^3 + 216x^2 - 144x + 36 - 13x^2 + 26x - 12 = 0
36x^4 - 144x^3 + 203x^2 - 118x + 24 = 0
Разложим так
36x^4 - 18x^3 - 126x^3 + 63x^2 + 140x^2 - 70x - 48x + 24 = 0
18x^3*(2x-1) - 63x^2*(2x-1) + 70x*(2x-1) - 24*(2x-1) = 0
(2x-1)(18x^3 - 63x^2 + 70x - 24) = 0
x1 = 1/2
Теперь разложим кубическое уравнение
18x^3 - 12x^2 - 51x^2 + 34x + 36x - 24 = 0
6x^2*(3x-2) - 17x*(3x-2) + 12(3x-2) = 0
(3x-2)(6x^2 - 17x + 12) = 0
x2 = 2/3
И, наконец, решаем квадратное уравнение
D = 17^2 - 4*6*12 = 289 - 288 = 1
x3 = (17 - 1)/12 = 16/12 = 4/3
x4 = (17 + 1)/12 = 18/12 = 3/2
Ответ: 1/2; 2/3; 4/3; 3/2