11)а
12)а
13)г
насчёт 10, ничем не могу помочь
Решение
3cos2x = 2cosx
3*(2cos²x - 1) - 2cosx = 0
6cos²x - 2cosx - 3 = 0
cosx = t
6t² - 2t - 3 = 0
D = 4 + 4*6*3 = 76
t₁ = (2 - 2√19)/12
t₁ = (1 - √19)/6
t₂ = (1 +√19)/6
1) cosx = (1 - √19)/6
x₁ =(1 - √19)/6 + 2πk, k∈Z
2) cosx = (1 + √19)/6
x₂ = (1 + √19)/6 + 2πn, n∈Z
1) ( 2m + 1 )/( 2m - 1 ) - ( 2m - 1 )/( 2m + 1 ) = [ ( 2m + 1 )^2 - ( 2m - 1 )^2 ] / ( 4m^2 - 1 )
2) ( 2m + 1 )^2 - ( 2m - 1 )^2 = ( 2m + 1 + 2m - 1 )( 2m + 1 - 2m + 1 ) = 4m•2 = 8m
3) 10m - 5 = 5( 2m - 1 )
4) 8m/ ( ( 2m - 1 )( 2m + 1 )) : 4m/ ( 5( 2m - 1 )) = 10 / ( 2m + 1 )
5) m = 3/14
10 / ( 2•3/14 + 1 ) = 10 / ( 3/7 + 1 ) = 10 / ( 10/7 ) = 7
Ответ 7
=[tex] \frac{1}{ \sqrt{ \frac{2x-1}{3} } }* \frac{2}{3} + \frac{1}{ \frac{2x+3}{5} } * \frac{2}{5} = \frac{2}{3 \sqrt{ \frac{2x-1}{3} } }+ \frac{2}{5\frac{2x+3}{5} }