<span>3(х-у)(во второй степени)=3(x^2-2xy+y^2)=3x^2-6xy+3y^2</span>
А) пусть f(x)=(x-4)(x+5), f(x)<0,
Область определения: R
Тогда нули f(x): х=4, х=-5
Так как это квадратичная функция, графиком является парабола, ветви вверх, то
Решением является отрезок от(-5;4)
Б) пусть f(x)=х^2-144, f(x)>=0,
Область определения: R
Тогда нули f(x): х=12, х=-12
Так как это квадратичная функция, графиком является парабола, ветви вверх, то
Решением являются интервалы (-бесконечность; -12] и [12;+бесконечность)
В)пусть f(х)=-6х^2+х+2, f(x)>=0,
Область определения: R
Тогда нули f(x): дискриминант равен:1+4*6*2=49
Х=-1, х=4/3
Так как это квадратичная функция, графиком является парабола, ветви вниз, то
Решением является интервал от [-1; 4/3]
ОДЗ
x > 2/3
3x - 2 > x + 6
3x - x > 6 + 2
2x > 8
x > 4
+ ОДЗ
x > 4
Ответ
x ∈ (4; + ∞)
........................................................