Проведем ВК⊥AD и BH⊥CD.
ВК - проекция наклонной МК на плоскость ромба, значит МК⊥AD по теореме о трех перпендикулярах.
МК - расстояние от точки М до AD.
BH - проекция наклонной МН на плоскость ромба, значит МН⊥CD по теореме о трех перпендикулярах.
МН - расстояние от точки М до CD.
ΔВАК = ΔВСН по гипотенузе и острому углу (АВ = ВС и ∠А = ∠С),
значит ВК = ВН.
ΔМВК = ΔМВН по двум катетам (ВК = ВН и ВМ - общая), значит
МК = МН, что и требовалось доказать.
1.Формула нахождения площади в прямоугольнике : а*в где а - первая сторона ,а в- это вторая сторона.
а=24см
в=25см
<span>24*25=600см2(квадратных)
2.</span>Треугольник АВС, где угол В-прямой.Угол А=60градусов, тогда угол С=30градусов, гипотенуза равна 40 см.
Катет, лежащий против угла в 30градусов равен половине длины гипотенузы, т.е 20см.
по теореме Пифагора
40^2-20^2=1600-400=1200
второй катет равен корню квадратному из 1200
1200=3*400=20корень из 3
площадь треугольника равна 1/2 произведения катетов (первый катет 20см, а второй катет - 20 корень из 3)
S=1/2*20*20 корень из 3
S=200 корень из 3(см2)
Исходя из подобия треугольников AOD и BOC составим отношение сторон.
AO:OC=AD:BC
BC=(AD*OC)*AO
BC=21*5:15=7
Ответ:7
Правильно только 3<em><u /></em><em><u /></em><u />, всегда сумма смежных и вертикальных углов равна была 180градусам