Попробуем доказать методом полной математической индукции.
1) При n = 1 получаем 14*13^1 + 13*2^2 = 14*13 + 13*4 = 13*18 = 26*9
При n = 1 выражение кратно 9.
2) Пусть при некотором n выражение кратно 9. 14*13^n + 13*2^(2n) = 9k
Докажем, что оно кратно 9 также и при n+1.
14*13^(n+1) + 13*2^(2n+2) = 14*13*13^n + 13*4*2^(2n) =
= 182*13^n + 52*2^(2n) = 4*(14*13^n + 13*2^(2n)) - 4*14*13^n + 182*13^n =
= 4*9k + (182 - 56)*13^n = 4*9k + 126*13^n = 4*9k + 14*9*13^n
Ясно, что это число кратно 9.
Таким образом, если при n = 1 выражение кратно 9, при n кратно 9 и при (n+1) кратно 9, то оно кратно 9 при любом натуральном n.
Найдём сумму квадратов коэффициентов, стоящих перед cosx и sinx:
16²+11²=377 . Теперь разделим обе части уравнения на √377:
Так как
то можно полагать, что
,
так как
, при этом
.
Получили формулу:
-x³+3x²+9х-29 найдем производную данной функции (-x³+3x²+9х-29)' = -3x²+6x+9 приравниваем к 0 -3x²+6x+9=0 -3(x²-2x-3)=0 решаем Д=4 х1=(2+4)/2=3 и х2=(2-4)/2=-1 найденные точки 3 и -1 принадлежат данному отрезку [-1;4], поэтому вычисляем значения этой функции в этих точках
f(3)=-x³+3x²+9х-29= -(3)³+3*(3)²+9*3-29=-27+27+27-29=-2
f(-1)=-x³+3x²+9х-29= -(-1)³+3*(-1)²+9*(-1)-29=1+3-9-29=-34
Наибольшее значение этой функции -2!