Sin2x=(cos²x/2-sin²x/2)(cos²x/2+sin²x/2)
sin2x=cosx
2sinxcosx-cosx=0
cosx(2sinx-1)=0
cosx=0⇒x=π/2+πn
<span>sinx=1/2⇒x=(-1)^n *π/6+πn</span>
Log6(x) + 3/2*log6(36)/log6(x) = 4/3*3
log6(x) +3/log6(x) = 4 | * log6(x)
(log6(x))^2 + 3 = 4log6(x)
log6(x) = t
t^2 -4t +3 = 0
По т. Виета
t1 = 1 и t2 = 3
a) t1 = 1 б) t2 = 3
log6(x) = 1 log6(x) = 3
x = 6 x = 6^3 = 216
Решение смотри на фотографии