Пусть О центр окружности. Хорда ЕF=120мм=12см=ОЕ=ОF, так как это радиусы, а радиус здесь равен 12 см. Имеем равносторонний треугольник ОЕF. Касательная через точку Е перпендикулярна ОЕ, так как это радиус. Угол ОЕF равен 60 гр., Так как это угол равностороннего треугольника, значит угол между касательной и хордой ЕF=90-60=30 градусов
В этом четырехугольнике ABCD диагональ АС делит его на два равнобедренных тр-ка: АВС (АВ=ВC - дано) и ACD (AD=DC - дано).
Значмт <CAD = <ACD = (180°- 110°):2 = 35°, а <BAC = <BCA = (180°-60°):2 = 60°.
Ответ: <A = 60°+35° = 95°.
Вот, это построение (Надеюсь я оформила правильно)
1) Проекция апофемы на основание равно h/3, где h - высота основания.
Пусть сторона основания равна а.
Для правильной пирамиды h/3 = (а*(√3/2)/3 = а√3/6.
Пусть заданный отрезок l - это перпендикуляр ОК из центра основания на апофему. Тогда отрезок ОД, равный h/3, равен l/(sin α).
Приравняем а√3/6 = l/(sin α).
Отсюда а = (6l)/(√3*(sin α).
Высота пирамиды Н = ОД*tg α = (l/(sin α))*((sin α)/(cos α)) = l/(cos α).
Апофему А находим по Пифагору:
А = √((l/(sin α))² + (l/(соs α))²) = √((l²(sin²α + cos²α))/(sin²α*cos²α)) =
= l/(sinα*cosα).
Умножим числитель и знаменатель дроби на 2 и получаем ответ:
апофема A = 2l/(2sinα*cosα) = 2l/(sin(2α)).
2) Гипотенуза основания равна √(6² + 8²) = 10 см.
Так ка угол наклона всех граней к основанию одинаков, то:
- высоты Н треугольников каждой грани равны между собой,
- проекция высоты Н треугольников каждой грани на основание равна радиусу r вписанной в основание окружности.
Полупериметр основания р = (6+8+10)/2 = 12 см.
Площадь основания So = (1/2)*6*8 = 24 см².
Тогда r = S/p = 24/12 = 2 см.
Отсюда высота грани Н = r/(cos 60°) = 2/(1/2) = 4 см.
Получаем ответ: Sбок = ((1/2)РА = (1/2)(2*12)*4 = 48 см².
получится что треугольник AOB - равносторонний потому что: 1) боковые стороны (они же радиусы) равны.
значит углы при основании (прихорде AB) = 60 градусов так как сумма углов в треугольнике равна 180 градусов.
значит хорда = 7 потому что треугольник AOB - равносторонний