Нет, высота не лежит внутри у тупоугольного треугольника из вершины острого угла (на продолжение противоположной стороны). Но у тупоугольного тр-ка 2 острых угла, значит 2 высоты не проходят внутри
ВО - биссектриса, т. к. АТ-СТ по определению касательных.
ТАС=ТСА=(180-(60*2))/2=60/2=30
<span>ВТА=ВТС по равенству треугольников АВТ и СВТ по трём сторонам. ВТА+ВТС+АТС=360 откуда ВТА=ВТС=АТС=120.Следовательно треугольник АБС - равносторонний. Следовательно точка Т - точка пересечения медиан</span>
1. Задача 1. решена пользователем
<span>
ХироХамаки
<span>
Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
</span></span>Основание
АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние
от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол
между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.
По свойству паралелограма АС и ВD точкой пересечения делятся пополам. Следовательно
Р АВО= 7+12:2+14:2=20
Р ВОС= 11+7+6=24