F(x) = cos5x · cos(x + π/6)
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
Ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z
21 - первый катет
x - гипотенуза
х-7 - второй катет
с²=а²+в²
х²=21²+(х-7)²
х²=441+х²-14х+49
х²-х²+14х=490
14х=490
х=35см- гипотенуза
35-7=28см - второй катет
Р=а+в+с
Р=21+28+35
Р=84см
<span>1) 2/6 и 6 2) 1/12 и 11/12 <u> 3) 13/12 и 12/13</u> 4) 1 3/4 и 7/5 <u>6) 2,5 и 0,4</u></span>
F(0)=4*0-sin0+1=0-0+1=1
f`(x)=4-cosx
f`(0)=4-cos0=4-1=3
Y=1+3(x-0)=1+3x