V=4*4*4=4³=64см³..........
{x² +3y² =31
{2x² +6y² =31x
2x²+6y²=31x
2(x² +3y²)=31x
2*31=31x
x=2
2² +3y² =31
4+3y² =31
3y² =31-4
3y² =27
y² = 9
y₁=3
y₂= -3
Ответ: (2; -3)
(2; 3)
1) (х-4)(х-5)<=0; x-4<=0; x<=4 ; <span>
x-5<=0; x<=5;
x</span>∈[4;5]
Ответ: x∈[4;5]
2) <span>х(х-41)>0; x>0
</span>x-41>0; x>41
x∈(-∞, 0)⋃(41, +∞)
Ответ: x∈(-∞, 0)⋃(41, ∞)
3) <span>x^2-25<0; (x-5)(x+5)<0;
</span>x<5 ; x<-5
x∈(-5, 5)
Ответ: x∈(-5, 5)
4) <span> (x^2-36)/x>=0
</span>ОДЗ x>=0 ; x∈[0, +∞);
(x-6)(x+6)>=0;
x∈(-∞, -6]⋃[6, +∞)
x∈[-6, 0)⋃[6, +∞) - c учетом ОДЗ
Ответ: x∈[-6, 0)⋃[6, +∞)
5) <span>-x^2+25x<0 |*(-1);
</span>x^2-25x>0;
x(x-25)>0
x>0; x-25>0; x>25
x∈(-∞, 0)⋃(25, +∞)
Ответ: x∈(-∞, 0)⋃(25, ∞)
6) <span> (x^2-7x+10)/(x-4)>=0;
</span>ОДЗ: x-4>=0; x>=4 ; x∈[4, +∞);
(x^2-7x+10)>=0
По т. Виета:
x∈(-∞, 2]⋃[5, +∞);
x∈[2, 4)⋃[5, ∞) - c учетом ОДЗ;
Ответ: x∈[2, 4)⋃[5, ∞)
(x2+2) (2-11) = 12
-9 (x2 + 2) = 12
x2 + 2 = 12 / (-9)
x2 = 4/3 - 2
x2 = - 2/3
а дальше действительно зависит от того, 2 - это степень или умножение на число
если степень, то x = корень (-2/3), тогда решений нет, так как -2/3 < 0
а если число, то x = - 2/3 : 2
Ответ : x = - 1/3
еще другой вариант, если двойка после первых скобок - это степень, тогда :
(х2 + 2) надо принять за y
y^2 - 11y -12 = 0
y1 = 12, y2 = -1
возвращаемся к " х " :
х2 + 2 = 12 или х2 + 2 = -1
<span>находишь 2 значения х - это и будет ответом</span>