A)MN
180-(60+76)=24- следовательно угол К острый
из этого выходит что MN наименьшая сторона
Пирамида правильная, значит в основании лежит квадрат ABCD, и высота, опущенная из точки M, будет падать в точку пересечения диагоналей квадрата в основании. Точку пересечения диагоналей обозначим H.
В прямоугольном треугольнике MHA:
<MAH = 60° (т.к. AH - проекция AM)
AM = 5
cos<MAH = AH/AM
cos60° = AH/5
AH = 5/2 = 2,5
AH - половина диагонали AC
AC = 2AH = 5
Из прямоугольного треугольника ACD (AD = DC = x, так как ABCD - квадрат), по теореме Пифагора:
AD² + DC² = AC²
x² + x² = 25
2x² = 25
x = 5/√2 = (5√2)/2
AD = DC = (5√2)/2
Sбок будет равно Pосн умноженное на апофему.
Проведем апофему MH1 в треугольнике MDC.
Т.к. пирамида правильная, треугольник MDC - равнобедренный, а значит высота MH1 так же является и медианой => DH1 = DC/2 = (5√2)/4
Из прямоугольного треугольника MHD по теореме Пифагора:
MH1² = MD² - DH1²
MH1² = 25 - 25/16
MH1² = 15*25/16
MH1 = (5√15)/4
Sбок = Pосн*MH1
Pосн = 4*AD = 10√2
Sбок = (10√2)*(5√15)/4 = (25√30)/2 = 12,5√30
Ответ: 12,5√30
У Вас в условии дан угол B и его же надо найти. Скорее всего, в условии дан угол C=90, а не B. Если <span>АВ:ВС=2:1, то это означает, что AB=2*BC, т.е. гипотенуза в 2 раза больше катета, значит, по теореме против катета лежит угол 30 градусов - это угол А, сумма острых углов в прямоугольном треугольнике равна 90, угол B=90-30=60 градусов</span>
В ΔАВD AD=BC, так как АВСD-параллелограмм, ∠ABD=90°,
так как AB⊥BD.
По т. Пифагора:
BD=√(AD²-AB²)=√(25²-20²)=√225=15см.
BD ⊥<span> АВ и CD, значит BD - высота параллелограмма.
Тогда S=BD*AB=15*20=300 см</span>²
<span>Можно
по-другому: </span>S ΔABD=BD*AB/2=15*20/2=150cм². По свойству параллелограмма диагональ делит параллелограмм на
2 равных треугольника, поэтому S пар.=2*Sтр=2*150=300 см²
<span>
</span>