Ответ:
a) u = (4-v) / 3; u = 2, v=-2;
б) v = 4 - 3u; u = 2; v = -2
Объяснение:
3u+v=4
а) переменную u через v :
3u+v=4
3u = 4-v
u = (4-v) / 3
u = 2
2 = (4-v) /3 |*3
6 = 4-v
<u>v = -2</u>
б) переменную v через u:
3u+v=4
v = 4 - 3u
u = 2
v = 4 - 3*2
v = 4-6
<u>v = -2</u>
В обоих случаях определите значение v при u=2
Х^3-9х^2>0
Замена: х^2=t
t-9>0
t>9
--o--->
9 (9;+бесконечность)
-25/(-20)=0,8
-16*0,8=-12,8
a(4)=-12,8
x^2-4x+b=0
По т. Виета: x1+x2=4
x1*x2=b
Зная, что 2x1+3x2=5, составим систему 2x1+3x2=5
x1+x2=4
x2=-3, x1=7,, тогда
7*(-3)=b, b=-21